The Dirichlet elliptic problem involving regional fractional Laplacian

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Heat Kernel Estimates for Dirichlet Fractional Laplacian

In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...

متن کامل

existence of three solutions for the dirichlet problem involving the p-laplacian and minimax inequality for relevant functionals

in this paper, we establish some results on the existence of at least three weak solutions for adirichlet problem involving p-laplacian using a variational approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2018

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5046685